
Rootkit Analysis: Hiding SSDT hooks
Written by: Nick Jogie

 System Service Descriptor Table (SSDT) patching has been widely used by
rootkits and is usually easily detected. BlackEnergy version 2 has
implemented a technique which successfully hides from basic rootkit
detection. Basic rootkit detectors typically only check address ranges, on
function pointers, listed in the SSDT. If the pointers are outside the kernel
address range, it implies that the SSDT is hooked.
 The following will illustrate a procedural check, used to uncover this
technique, using a kernel debugger.

Checking for corruption-

The first step would be to check for discrepancies in any executable image
loaded in memory. This is accomplished by using WinDbg’s !chkimg extension.

Command: “!for_each_module !chkimg @#ModuleName”

The above command will loop through all loaded modules on the system and
perform a check against the symbol store.

The result above shows corruption in the “nt”(ntoskrnl.exe) module. The
nature of this artifact seems to indicate a possible correction for an out-
of-range value. As you will later find out, it was most likely introduced
because of the new ServiceTables added by the rootkit.

Normal Output:
lkd> u nt!KiBBTUnexpectedRange+8
nt!KiBBTUnexpectedRange+0x8:

Corrupted Output:
lkd> u nt!KiBBTUnexpectedRange+8
nt!KiBBTUnexpectedRange+0x8:

http://msdn.microsoft.com/en-us/library/cc266910.aspx

Since this was the only corruption identified, we need to look for additional
indicators.

Checking the SSDT-

The SSDT is used for dispatching system calls either from INT 0x2E or
SYSENTER.

The SSDT uses a structure called the System Service Table (SST).

SST Structure:

The SST structure is used by two different tables in the kernel:

1. KeServiceDescriptorTable

lkd> dps nt!KeServiceDescriptorTable

2. KeServiceDescriptorTableShadow

lkd> dps nt!KeServiceDescriptorTableShadow

The ServiceTable field is a pointer to a linear array. The addresses
contained in this array are the entry points to kernel routines. This array
is known as the SSDT.

lkd> dps nt!KiServiceTable

lkd> dps win32k!W32pServiceTable

Dumping KeServiceDescriptorTable:
lkd> dds poi(nt!KeServiceDescriptorTable) L
poi(nt!KeServiceDescriptorTable+8)

Dumping KeServiceDescriptorTableShadow:
lkd> dds poi(nt!KeServiceDescriptorTableShadow+10) L
poi(nt!KeServiceDescriptorTableShadow+18)

The CounterTable is not used in the free build version of Windows.
The ServiceLimit holds the size of the SSDT array.
The ArgumentTable is a pointer to the System Service Parameter Table (SSPT).
SSPT is an array which indicates the amount of space allocated for the
function argument related to the SSDT routine.

Looking at the results from the analysis of the SSDT thus far, nothing seems
unusual. All addresses seem to be in range and matching their respective
symbols. A basic rootkit detector would report the same results we’ve just
analyzed.

What technique could still manage to hook the SSDT and bypass basic rootkit
detectors?

Let’s investigate!

The SST itself is a member of another structure called Service Descriptor
Table (SDT).

SDT Structure:

It seems that there are two empty tables in the SDT.
Interestingly enough, these are reserved to allow other device drivers to add
their own SSTs. Internet Information Services (IIS), for example, uses
Spud.sys which calls KeAddSystemServiceTable to add its own kernel routines.

Seeing that adding new service tables is possible, how would applications
access it?

ServiceTable Pointers-

The answer would be in the KTHREAD structure. Each thread has a pointer to a

ServiceTable which is set by KeInitThread. Also, depending on if the thread
needs the GUI functions contained in the Shadow SSDT, PsConvertToGuiThread is
called.

KTHREAD Structure:
lkd> dt -v nt!_KTHREAD

Legitimate threads would either point to KeServiceDescriptorTable or
KeServiceDescriptorTableShadow. Any discrepancy should be investigated.

Command:
!for_each_thread ".echo Thread: @#Thread; dt nt!_kthread ServiceTable
@#Thread"

Below are the parsed results for unique ServiceTables in active threads:

It seems that there are two new tables, which are being reference, we were
not aware of.

Let’s take a closer look.

lkd> dps ffa07a68

Looking familiar?

lkd> dps 81133230

Let’s follow the first rogue ServiceTable pointer. I consider these rogue

pointers because they do not have an associated symbol.

lkd> dds 81267918 L 11c

This rogue SSDT seems to have correct pointers to most of the APIs, however I
took the liberty to point out the few that didn’t.

The second rogue SSDT turned out to be a mirror copy of the first.

Since new SSDTs were created, another mechanism must be responsible for
updating the KTHREAD ServiceTable pointers. A possible way to accomplish this
would be to patch PsSetCreateThreadNotifyRoutine or
PsSetCreateProcessNotifyRoutine in order to intercept thread creation
callbacks.

Conclusion-

While this technique is neither new nor ground-breaking, it is used in
rootkits today. This article was intended to show the technique used from a
kernel debugging point-of-view.

References-
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.secureworks.com/research/threats/blackenergy2/
http://www.rootkit.com/newsread.php?newsid=922
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=42

Please send questions and comments to nick.nopsled[at]gmail.com

http://msdn.microsoft.com/en-us/library/ms802948.aspx
http://msdn.microsoft.com/en-us/library/ms802952.aspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.secureworks.com/research/threats/blackenergy2/
http://www.rootkit.com/newsread.php?newsid=922
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=42

